nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2023 04 v.39 345-352
印刷电路板换热器芯体尺寸多目标优化研究
基金项目(Foundation): 国家自然科学基金项目(51806172)
邮箱(Email): yangyu@tpri.com.cn;
DOI: 10.19944/j.eptep.1674-8069.2023.04.010
中文作者单位:

国家能源集团科学技术研究院有限公司;西安热工研究院有限公司;

摘要(Abstract):

由于具有高效紧凑且能够同时承受高温高压工作环境等优势,印刷电路板换热器被认为是超临界二氧化碳布雷顿循环的最佳选择之一。为了阐明印刷电路板换热器传热性能和阻力之间关系,本文采用非占优排序遗传算法(NSGA-Ⅱ)对印刷电路板换热器的结构尺寸进行了优化设计。NSGA-Ⅱ是一种热门的能够获得Pareto最优解集的多目标遗传算法。首先构建描述设计变量与目标参数之间映射关系的代理模型,然后将NSGA-Ⅱ与代理模型相结合,进而开展优化设计研究,获得最优解集及其对应的设计变量。研究结果表明,Pareto最优解中p_1的压降约为p11的40倍,而p_1的效率约为p11的1.56倍,说明该PCHE性能有很大的改进空间;在Pareto解集中,沿着压降减小的方向,对应的印刷电路板换热器芯体宽度首先增加,然后宽度保持不变但高度增加,最后宽度再次增加,达到设计空间的上限。研究结果可为印刷电路板换热器芯体结构的优化设计提供参考。

关键词(KeyWords): 印刷电路板换热器;多目标优化;传热效率;压降
参考文献

[1] LI Hongzhi, ZHANG Yifan, BAI Wengang, et al. Control strategies and dynamic experimental tests on the wide-range and rapid load regulation of a first pilot multi-megawatts fossil-fired supercritical CO2power system[J]. Energy Conversion and Management, 2023, 279:116748.

[2] ZHANG Yifan, LI Hongzhi, LI Kailun, et al. Dynamic characteristics and control strategies of the supercritical CO2 Brayton cycle tailored for the new generation concentrating solar power[J]. Applied Energy, 2022,328:120190.

[3] WANG Qingqing, XU Bo, HUANG Xin, et al. Heat transfer and flow characteristics of straight-type PCHEs with rectangular channels of different widths[J]. Nuclear Engineering and Design, 2022, 391:111734.

[4] LIU Bohan, LU Mingjian, SHUI Bo, et al. Thermal-hydraulic performance analysis of printed circuit heat exchanger precooler in the Brayton cycle for supercritical CO2 waste heat recovery[J]. Applied Energy, 2022, 305:117923.

[5] CHEN Minghui, SUN Xiaodong, RICHARD N C, et al. Experimental and numerical study of a printed circuit heat exchanger[J]. Annals of Nuclear Energy, 2016, 97:221-231.

[6] LIU Shenghui, HUANG Yanping, WANG Junfeng, et al. Experimental study of thermal-hydraulic performance of a printed circuit heat exchanger with straight channels[J]. International Journal of Heat and Mass Transfer, 2020, 160:120109.

[7] PARK J H, KWON J G, KIM T H, et al. Experimental study of a straight channel printed circuit heat exchanger on supercritical CO2 near the critical point with water cooling[J]. International Journal of Heat and Mass Transfer, 2020, 150:119364.

[8] NIKITIN K, KATO Y, NGO L. Printed Circuit Heat Exchanger Thermal-hydraulic Performance in Supercritical CO2 Experimental Loop[J]. International Journal of Refrigeration, 2006, 29:807-814.

[9] MA T, LI L, XU X Y, et al. Study on local thermal-hydraulic performance and optimization of zigzag-type printed circuit heat exchanger at high temperature[J]. Energy Conversion and Management,2015, 104:55-66.

[10] LEE S M, and KIM K Y. Optimization of zigzag flow channels of a printed circuit heat exchanger for nuclear power plant application[J].Journal of Nuclear Science and Technology, 2012, 49(3):343-351.

[11] MUHAMMED S, AHMAD A A, ABDALLAH S B. CFD aided design and analysis of a precooler with zigzag channels for supercritical CO2power cycle[J]. Energy Conversion and Management, 2021, 236:114029.

[12] YU Yang, LI Hongzhi, YAO Mingyu, et al. Investigation on the effects of narrowed channel cross-sections on the heat transfer performance of a wavy-channeled PCHE[J]. International Journal of Heat and Mass Transfer, 2019, 135:33-43.

[13] WEN Zhexi, LV Yigao, LI Qing, et al. Numerical study on heat transfer behavior of wavy channel supercritical CO2 pirnted circuit heat exchangers with different amplitude and wavelength parameters[J].International Journal of Heat and Mass Transfer, 2020, 147:118922.

[14] ZHENG Zhanying, DAVID F F, BRIAN S H. Transient laminar heat transfer simulations in periodic zigzag channels[J]. International Journal of Heat and Mass Transfer, 2014, 71:758-768.

[15] MUHAMMAD S, KIM M H. Thermal-hydraulic analysis of sinusoidal fin-based printed circuit heat exchangers for supercritical CO2 Brayton cycle[J]. Energy Conversion and Management, 2019, 193:124-139.

[16] KIM D E, KIM M H, CHA J E, et al, Numerical investigation on thermal-hydraulic performance of a new printed circuit heat exchanger model[J]. Nuclear Engineering and Design, 2008, 238:3269-3276.

[17] CHEN F, ZHANG L, HUAI X, et al. Comprehensive Performance Comparison of Airfoil Fin PCHEs with NACA 00XX Series Airfoil[J].Nuclear Engineering and Design, 2017, 315:42-50.

[18] CHU W, LI X, MA T, et al. Study on hydraulic and thermal performance of printed circuit heat transfer surface with distributed airfoil fins[J]. Applied Thermal Engineering, 2017, 114:1309-1318.

[19] KIM T H, KWON J G, YOONN S H, et al. Numerical analysis of air-foil shaped fin performance in printed circuit heat exchanger in a supercritical carbon dioxide power cycle[J]. Nuclear Engineering and Design, 2015, 288:110-118.

[20]杨玉,郭子岗,李红智,等.大型印刷电路板换热器传热性能数值模拟研究[J].电力科技与环保, 2023, 39(3):249-255.YANG Yu, GUO Zigang, LI Hongzhi, et al. Numerical simulation of the heat transfer performance of a large-scale printed circuit heat exchanger[J]. Electric Power Technology and Environmental Protection,2023, 39(3):249-255.

[21] CHU Wenxiao, BENNETT K, CHENG Jie, et al. Numerical study on a novel hyperbolic inlet header in straight-channel printed circuit heat exchanger[J]. Applied Thermal Engineering, 2019, 146:805-814.

[22] KOO G W, LEE S M, KIM K Y. Shape optimization of inlet part of a printed circuit heat exchanger[J]. Applied Thermal Engineering, 2014,72:90-96.

[23] MORTEAN M V V, CISTERNA L H R, PAIVA K V, et al. Thermal and hydrodynamic analysis of a cross-flow compact heat exchanger[J].Applied Thermal Engineering, 2019, 150:750-761.

[24] KIM J, SHIN J H, SOHN S S, et al. Analysis of non-uniform flow distribution in parallel micro-channels[J]. Journal of Mechanical Science and Technology, 2019, 33(8):3859-3864.

[25] BAEK S, LEE C, JEONG S. Effect of flow maldistribution and axial conduction on compact microchannel heat exchanger[J]. Cryogenics,2014, 60:49-61.

[26] LEE S M, and KIM K Y. Comparative Study on Performance of a Zigzag Printed Circuit Heat Exchanger with Various Channel Shapes and Configurations[J]. Heat Mass Transfer, 2013, 49:1021-1028.

[27] SON S, LEE Y, LEE J I. Development of an advanced printed circuit heat exchanger analysis code for realistic flow path configurations near header regions[J]. International Journal of Heat and Mass Transfer, 2015,89:242-250.

[28] DEB K, PRATAP A, AGARWAL S, et al. A Fast and Elitist Multiobjective Genetic Algorithm:NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197.

[29] ZHANG X, SUN X, CHRISTENSEN R N. Optimization of s-shaped fin channels in a printed circuit heat exchanger for supercritical CO2 test loop[C]. The 5th International Supercritical CO2 Power Cycles Symposium, San Antonio, Texas, 2016.

[30] LEE S M, KIM K Y, KIM S W. Multi-objective optimization of a double-faced type printed circuit heat exchanger[J]. Applied Thermal Engineering, 2013, 60:44-50.

[31] ZAINAB A A, ASHISH M G, ALA’A H A. A state of art review on applications of multi-objective evolutionary algorithms in chemicals production reactors[J]. Artificial Intelligence Review, 2023, 56:2435-2496.

[32] XU Hong, DUAN Chengjie, DING Hao, et al. The optimization for the straight-channel PCHE size for supercritical CO2 Brayton cycle[J].Nuclear Engineering and Technology, 2021, 53(6):1786-1795.

[33] SHI H N, MA T, CHU W X, et al. Optimization of Inlet Part of a Microchannel Ceramic Heat Exchanger Using Surrogate Model Coupled With Genetic Algorithm[J]. Energy Conversion and Management, 2017, 149:988-996.

[34] JIN Feng, CHEN Deqi, HU Lian, et al. Optimization of zigzag parameters in printed circuit heat exchanger for supercritical CO2Brayton cycle based on multi-objective genetic algorithm[J]. Energy Conversion and Management, 2022, 270:116243.

[35] DOSTAL V. A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors[D]. Ph.D. thesis, Massachusetts Institute of Technology, Massachusetts, USA, 2004.

基本信息:

DOI:10.19944/j.eptep.1674-8069.2023.04.010

中图分类号:TK172;TN41

引用信息:

[1]安风霞,杨玉,吴帅帅等.印刷电路板换热器芯体尺寸多目标优化研究[J].电力科技与环保,2023,39(04):345-352.DOI:10.19944/j.eptep.1674-8069.2023.04.010.

基金信息:

国家自然科学基金项目(51806172)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文