nav emailalert searchbtn searchbox tablepage yinyongbenwen piczone journalimg searchdiv qikanlogo popupnotification paper
2025 02 v.41 183-193
循环流化床锅炉炉内脱硫技术研究进展
基金项目(Foundation): 国家自然科学基金项目(52306029)
邮箱(Email): zhangguangxue@cjlu.edu.cn;
DOI: 10.19944/j.eptep.1674-8069.2025.02.002
中文作者单位:

中国矿业大学低碳能源与动力工程学院;中国计量大学能源环境与安全工程学院;

摘要(Abstract):

【目的】循环流化床(circulating fluidized bed,CFB)锅炉可通过往炉内投放钙基脱硫剂,实现燃烧中脱硫,炉膛出口处SO_2原始排放浓度较低。然而,面对日趋严格的火电厂大气污染物排放标准,如何优化炉内脱硫工艺、巩固CFB锅炉低成本污染物排放控制优势,是工程上十分关心的问题,需要对CFB锅炉的SO_2生成和炉内脱硫特性开展更加深入的研究。【方法】本文通过梳理近年CFB锅炉炉内脱硫的相关研究,总结各设计或运行参数对炉内脱硫效率的影响规律,提出针对性的炉内脱硫控制措施。【结果】研究表明,在给定脱硫剂和锅炉负荷下,提高分离器效率、改善物料循环系统性能,采用与高效分离器相匹配的超细石灰石,合理设计及调控炉膛温度(800~850℃)和氧量,确定合适的石灰石给入位置,适当增大钙硫比但不高于3.3,可以有效提高炉内脱硫效率,甚至在特定工况下不依靠尾部烟气脱硫系统便可直接满足SO_2超低排放标准。然而,炉内脱硫通常会导致NO_x排放升高,当钙硫比超过2时,锅炉热损失增加使锅炉效率有所降低,另外飞灰中CaO及脱硫产物增加对尾部除尘性能也有一定的影响。【结论】CFB锅炉炉内需要在优化脱硫性能的同时,注重从锅炉整体运行经济性等方面进行综合考虑。

关键词(KeyWords): 循环流化床;SO_2;炉内脱硫;影响因素
参考文献

[1]金涌,祝京旭,汪展文,等.流态化工程原理[M].北京:清华大学出版社,2001.JIN Yong, ZHU Jingxu, WANG Zhanwen, et al. Fluidization engineering principles[M]. Beijing:Tsinghua University Press, 2001.

[2] LYU J F, YANG H R, LING W, et al. Development of a supercritical and an ultra-supercritical circulating fluidized bed boiler[J]. Frontiers in Energy, 2017, 13(1):114-119.

[3]火电厂大气污染物排放标准:GB 13223-2011[S].北京:中国环境科学出版社,2011.Emission standard of air pollutants for thermal power plants:GB13223-2011[S]. Beijing:China Environmental Press, 2011.

[4] KE X W, LI D F, ZHANG M, et al. Ash formation characteristics of two Indonesian coals and the change of ash properties with particle size[J]. Fuel Processing Technology, 2019, 186:73-80.

[5] KNUDSEN J N, JENSEN P A, LIN W, et al. Sulfur transformations during thermal conversion of herbaceous biomass[J]. Energy&Fuels, 2004, 18(3):810-819.

[6]蔡毅.循环床炉内脱硫气氛效应与组合脱硫运行优化[D].杭州:浙江大学,2016.CAI Yi. Effect of atmosphere on in-situ desulpurization and operation optimization of an integrated desulphurization system with a CFB[D]. Hangzhou:Zhejiang University, 2016.

[7] LEI M, HUANG X Z, WANG C B, et al. Investigation on SO2, NO and NO2 release characteristics of Datong bituminous coal during pressurized oxy-fuel combustion[J]. Journal of Thermal Analysis and Calorimetry, 2016, 126(3):1067-1075.

[8] SUGAWARA K, TOZUKA Y, SUGAWARA T, et al. Effect of heating rate and temperature on pyrolysis desulfurization of a bituminous coal[J]. Fuel Processing Technology, 1994, 37:73-85.

[9]柯希玮,蔡润夏,吕俊复,等.钙基脱硫剂对循环流化床NOx排放影响研究进展[J].洁净煤技术,2019,25(1):1-11.KE Xiwei, CAI Runxia, LYU Junfu, et al. Research progress of the effects of Ca-based sorbents on the NOx reaction in circulating fluidized bed boilers[J]. Clean Coal Technology, 2019, 25(1):1-11.

[10] DIAZ-BOSSIO L M, SQUIER S E, PULSIFER A H. Reductive decomposition of calcium sulfate utilizing carbon monoxide and hydrogen[J]. Chemical Engineering Science, 1985, 40(3):319-324.

[11] LYNGFELT A, LECKNER B. Sulphur capture in fluidized bed boilers:The effect of reductive decomposition of CaSO4[J].Chemical Engineering Journal, 1989, 40(2):59-69.

[12] MIAO Z, YANG H R, WU Y X, et al. Experimental studies on decomposing properties of desulfurization gypsum in a thermogravimetric analyzer and multiatmosphere fluidized beds[J]. Industrial&Engineering Chemistry Research, 2012, 51(15):5419-5423.

[13] ZHAO S, YOU C F. The effect of reducing components on the decomposition of desulfurization products[J]. Fuel, 2016, 181:1238-1243.

[14] ANTHONY E J, GRANATSTEIN D L. Sulfation phenomena in fluidized bed combustion systems[J]. Progress in Energy and Combustion Science, 2001, 27(2):215-236.

[15] LYNGFELT A, LANGER V, STEENARI B M, et al. Calcium sulphide formation in fluidized bed boilers[J]. The Canadian Journal of Chemical Engineering, 1995, 73(2):228-233.

[16] HANSEN P F B, JOHANSEN K D,?STERGAARD K. Hightemperature reaction between sulphur dioxide and limestone—V.The effect of periodically changing oxidizing and reducing conditions[J]. Chemical Engineering Science, 1993, 48(7):1325-1341.

[17] CAI R X, HUANG Y Q, LI Y R, et al. Effects of the limestone particle size on the sulfation reactivity at low SO2 concentrations using a LC-TGA[J]. Materials, 2019, 12(9):1-17

[18] SILCOX G D, KRAMLICH J C, PERSHING D W. A mathematical model for the flash calcination of dispersed calcium carbonate and calcium hydroxide particles[J]. Industrial&Engineering Chemistry Research, 1989, 28(2):155-160.

[19] BORGWARDT R H. Calcination kinetics and surface area of dispersed limestone particles[J]. AIChE Journal, 1985, 31(1):103-111.

[20] FAN L S, JIANG P, AGNIHOTRI R, et al. Dispersion and ultrafast reaction of calcium-based sorbent powders for SO2 and air toxics removal in coal combustion[J]. Chemical Engineering Science, 1999, 54(22):5585-5597.

[21] ZARKANITIS S, SOTIRCHOS S V. Pore structure and particle size effects on limestone capacity for SO2 removal[J]. AIChE Journal, 1989, 35(5):821-830.

[22] HARTMAN M, COUGHLIN R W. Reaction of sulfur dioxide with limestone and the grain model[J]. AIChE Journal, 1976, 22(3):490-498.

[23] MARGARITA D L O-L, LUIS F D T, FRANCISCO G-L, et al.Modeling of limestone sulfation for typical oxy-fuel fluidized bed combustion conditions[J]. Energy&Fuels, 2013, 27(4):2266-2274.

[24]杨海瑞,WIRSUM M,吕俊复,等. CFB锅炉内物料停留时间的模型研究[J].热能动力工程,2003,18(2):143-146+214.YANG Hairui, WIRSUM M, LU Junfu, et al. Modeling research of residence time of materials in a circulating fluidized bed boiler[J].Journal of Engineering for Thermal Energy and Power, 2003, 18(2):143-146+214.

[25] SAASTAMOINEN J J. Particle-size optimization for SO2 capture by limestone in a circulating fluidized bed[J]. Industrial&Engineering Chemistry Research, 2007, 46(22):7308-7316.

[26] MATTISSON T, LYNGFELT A. A sulphur capture model for circulating fluidized-bed boilers[J]. Chemical Engineering Science, 1998, 53(6):1163-1173.

[27]蔡润夏,柯希玮,葛荣存,等.循环流化床超细石灰石炉内脱硫研究[J].中国电机工程学报,2018,38(10):3042-3048+3155.CAI Runxia, KE Xiwei, GE Rongcun, et al. The in-situ desulfurization with ultra-fine limestone for circulating fluidized bed boilers[J]. Proceedings of the CSEE, 2018, 38(10):3042-3048+3155.

[28] CAI R X, KE X W, HUANG Y Q, et al. Applications of ultrafine limestone sorbents for the desulfurization process in CFB boilers[J].Environmental Science&Technology, 2019, 53(22):13514-13523.

[29] CAI R X, ZHANG H, ZHANG M, et al. Development and application of the design principle of fluidization state specification in CFB coal combustion[J]. Fuel Processing Technology, 2018, 174:41-52.

[30] MULLIGAN T, POMEROY M, BANNARD J E. The mechanism of the sulphation of limestone by sulphur dioxide in the presence of oxygen[J]. Journal of the Energy Institute, 1989, 62:40-47.

[31] FUERTES A B, ALVAREZ D, RUBIERA F, et al. Surface area and pore size changes during sintering of calcium oxide particles[J]. Chemical Engineering Communications, 2007, 109(1):73-88.

[32]蔡润夏.基于粒度效应的循环流化床炉内高效脱硫技术研究[D].北京:清华大学,2019.CAI Runxia. Research on the high-efficiency desulfurization technology inside circulating fluidized bed furnaces based on the particle-size effects[D]. Beijing:Tsinghua University, 2019.

[33] TARELHO L A C, MATOS M A A, PEREIRA F J M A. The influence of operational parameters on SO2 removal by limestone during fluidised bed coal combustion[J]. Fuel Processing Technology, 2005, 86(12-13):1385-1401.

[34] BRAGANCA S R, CASTELLAN J L. FBC desulfurization process using coal with low sulfur content, high oxidizing conditions and metamorphic limestones[J]. Brazilian Journal of Chemical Engineering, 2009, 26(2):375-383.

[35] YUE G X, CAI R X, LYU J F, et al. From a CFB reactor to a CFB boiler-The review of R&D progress of CFB coal combustion technology in China[J]. Powder Technology, 2016, 316:18-28.

[36] TARELHO L A C, MATOS M A A, PEREIRA F J M A. Axial and radial CO concentration profiles in an atmospheric bubbling FB combustor[J]. Fuel, 2005, 84(9):1128-1135.

[37] KNOBIG T, WERTHER J,?MAND L-E, et al. Comparison of large-and small-scale circulating fluidized bed combustors with respect to pollutant formation and reduction for different fuels[J].Fuel, 1998, 77(14):1635-1642.

[38]?MAND L-E, LECKNER B, SV?RD S H, et al. Co-combustion of pulp-and paper sludge with wood–emissions of nitrogen,sulphur and chlorine compounds[C]. 17th International Conference on Fluidized Bed Combustion, Florida, USA, 2003.

[39] VAROL M, ATIMTAY A T, OLGUN H, et al. Emission characteristics of co-combustion of a low calorie and high sulfur–lignite coal and woodchips in a circulating fluidized bed combustor:Part 1. Effect of excess air ratio[J]. Fuel, 2014, 117:792-800.

[40] XIE Jianjun, YANG Xuemin, ZHANG Lei, et al. Emissions of SO2, NO and N2O in a circulating fluidized bed combustor during co-firing coal and biomass[J]. Journal of Environmental Sciences,2007, 19(1):109-116.

[41] HOU H M, LI S Y, LU Q G. Gaseous emission of monocombustion of sewage sludge in a circulating fluidized bed[J]. Industrial&Engineering Chemistry Research, 2013, 52(16):5556-5562.

[42]张中林,陈晓平. 440 t/h CFB锅炉掺烧石油焦二氧化硫排放特性研究[J].热能动力工程,2012,27(4):455-458+516-517.ZHANG Zhonglin, CHEN Xiaoping. Study of the SO2 emission characteristics of a 440 t/h circulating fluidized bed boiler burning coal mixed and diluted with petroleum coke[J]. Journal of Engineering for Thermal Energy and Power, 2012, 27(4):455-458+516-517.

[43] SHAHZAD K, SALEEM M, GHAURI M, et al. Emissions of NOx,SO2, and CO from co-combustion of wheat straw and coal under fast fluidized bed condition[J]. Combustion Science and Technology, 2015, 187(7):1079-1092.

[44] DUAN L B, CHEN X P, LI Y J, et al. Investigation on SO2emission from 410 t/h circulating fluidized bed boiler burning petroleum coke and coal[J]. Asia-Pacific Journal of Chemical Engineering, 2010, 5(2):274-280.

[45]段伦博,陈晓平,梁财,等.以煤焦混合物为燃料的循环流化床锅炉SO2排放特性[J].化工学报,2008,59(3):728-734.DUAN Lunbo, CHEN Xiaoping, LIANG Cai, et al. SO2 emission characteristics of circulating fluidized bed boiler co-firing coal and petroleum coke[J]. Journal of Chemical Industry and Engineering, 2008, 59(3):728-734.

[46] GUNGOR A. Prediction of SO2 and NOx emissions for low-grade Turkish lignites in CFB combustors[J]. Chemical Engineering Journal, 2009, 146(3):388-400.

[47] LYNGFELT A, LECKNER B. SO2 capture and N2O reduction in a circulating fluidized-bed boiler:Influence of temperature and air staging[J]. Fuel, 1993, 72(11):1553-1561.

[48]汪佩宁.循环流化床过渡区二次风射流及颗粒扩散行为研究[D].北京:清华大学,2017.WANG Peining. Study on secondary air injection and solids dispersion in the splash zone of a circulating fluidized bed[D].Beijing:Tsinghua University, 2017.

[49] MATTISSON T, LYNGFELT A. Reaction between sulfur dioxide and limestone under periodically changing oxidizing and reducing conditions-Effect of cycle time[J]. Energy&Fuels, 1998, 12(5):905-912.

[50] MATTISSON T, LYNGFELT A. The reaction between limestone and SO2 under periodically changing oxidizing and reducing conditionsEffect of temperature and limestone type[J]. Thermochimica Acta,1999, 325(1):59-67.

[51]范红宇,曹欣玉,周俊虎,等.不同气氛下煤燃烧固硫化学反应机理研究进展[J].煤炭学报,2003,28(1):74-79.FAN Hongyu, CAO Xinyu, ZHOU JUnhu, et al. Development of sulfur capture mechanism during coal combustion process in different atmosphere[J]. Journal of Coal Society, 2003, 28(1):74-79.

[52] JEONG S, LEE K S, KEEL S I, et al. Mechanisms of direct and in-direct sulfation of limestone[J]. Fuel, 2015, 161:1-11.

[53] TULLIN C, NYMAN G, GHARDASHKHANI S. Direct Sulfation of CaCO3:The influence of CO2 partial pressure[J]. Energy&Fuels, 1993, 7:512-519.

[54] LUPIá?EZ C, GUEDEA I, BOLEA I, et al. Experimental study of SO2 and NOx emissions in fluidized bed oxy-fuel combustion[J].Fuel Processing Technology, 2013, 106:587-594.

[55] GARCíA-LABIANO F, RUFAS A, LUIS d D L F, et al. Calciumbased sorbents behaviour during sulphation at oxy-fuel fluidised bed combustion conditions[J]. Fuel, 2011, 90(10):3100-3108.

[56] BORGWARDT R H. Calcium oxide sintering in atmospheres containing water and carbon dioxide[J]. Industrial&Engineering Chemistry Research, 1989, 28:493-500.

[57]陈传敏,赵长遂,赵毅,等. O2/CO2气氛下燃煤过程中SO2排放特性实验[J].东南大学学报(自然科学版),2006,36(4):546-550.CHEN Chuanmin, ZHAO Changsui, ZHAO Yi, et al. Experiments of SO2 emission characteristics during coal combution under O2/CO2 atmosphere[J]. Journal of Southeast University(Natural Science Edition), 2006, 36(4):546-550.

[58] DONAT F, FLORIN N H, ANTHONY E J, et al. Influence of hightemperature steam on the reactivity of CaO sorbent for CO2 capture[J].Environmental Science Technology, 2012, 46(2):1262-1269.

[59] STEWART M C, MANOVIC V, ANTHONY E J, et al.Enhancement of Indirect Sulphation of limestone by steam addtion[J]. Environmental Science Technology, 2010, 44(22):8781-8786.

[60] STEWART M C, SYMONDS R T, MANOVIC V, et al. Effects of steam on the sulfation of limestone and NOx formation in an airand oxy-fired pilot-scale circulating fluidized bed combustor[J].Fuel, 2012, 92(1):107-115.

[61]田路泞,陈振辉,杨伟,等.水蒸汽对煤流化床富氧燃烧及SO2析出和脱除的影响[J].煤炭学报,2014,39(12):2537-2543.TIAN Luning, CHEN Zhenhui, YANG Wei, et al. Effect of steam on coal combustion and SO2 emission and removal during oxyfuel fluidized bed combustion[J]. Journal of Coal Society, 2014, 39(12):2537-2543.

[62] MANOVIC V, ANTHONY E J. Carbonation of CaO-based sorbents enhanced by steam addition[J]. Industrial&Engineering Chemistry Research, 2010, 49(19):9105-9110.

[63] LI Z S, LIU Y, CAI N S. Understanding the enhancement effect of high-temperature steam on the carbonation reaction of CaO with CO2[J]. Fuel, 2014, 127:88-93.

[64] MATTISSON T, LYNGFELT A. A method of evaluating limestone reactivity with so, under fluidized bed combustion conditions[J]. The Canadian Journal of Chemical Engineering, 1998, 76:762-770.

[65]高明明,岳光溪,雷秀坚,等.循环流化床锅炉石灰石控制研究[J].动力工程学报,2014,34(10):759-764+777.GAO Mingming, YUE Guangxi, LEI Xiujian, et al. Research on limestone control of circulating fluidized bed boiler[J]. Journal of Chinese Society of Power Engineering, 2014, 34(10):759-764+777.

[66] LIU H, GIBBS B M. The influence of limestone addition at different positions on gaseous emissions from a coal-fired circulating fluidized bed combustor[J]. Fuel, 1998, 77(14):1569-1577.

[67]黄文强.循环流化床锅炉不同石灰石给料方式经济性对比[J].工业锅炉,2010(4):38-40.HUANG Wenqiang. The Economy contrast of different limestone feeding way of CFB boiler[J]. Industrial Boilers, 2010(4):38-40.

[68]张茂龙,李陟峰,徐振伟,等.大型循环流化床锅炉超低排放技术应用研究[J].锅炉技术,2019,50(6):39-44.ZHANG Maolong, LI Zhifeng, XU Zhenwei, et al. Application of ultra low emission for large-scale circulating fluidized bed boiler[J]. Boiler Technology, 2019, 50(6):39-44.

[69]张磊,杨学民,谢建军,等.粉煤和石灰石加入位置对循环流化床燃煤过程NOx与N2O排放的影响[J].中国电机工程学报,2006,26(21):92-98.ZHANG Lei, YANG Xuemin, XIE Jianjun, et al. Effect of coal and limestone addition position on emission of NOx and N2O during coal combustion in a circulating fluidized bed combustor[J]. Proceedings of the CSEE, 2006, 26(21):92-98.

[70] KE X W, CAI R X, ZHANG M, et al. Application of ultra-low NOx emission control for CFB boilers based on theoretical analysis and industrial practices[J]. Fuel Processing Technology, 2018, 181:252-258.

[71]张志华.基于环保约束的CFB机组联合脱硫节能优化与控制研究[D].太原:山西大学,2016.ZHANG Zhihua. Optimization control research considering energysaving and pro-environment of combined desulfurization system for circulating fluidized bed unit[D]. Taiyuan:Shanxi University, 2016.

[72] DIEGO L F D, LONDONOT C A, WANG X S, et al. Influence of operating parameters on NOx and N2O axial profiles in a circulating fluidized bed combustor[J]. Fuel, 1996, 75(8):971-978.

[73] TARELHO L A C, MATOS M A A, PEREIRA F J M A. Influence of limestone addition on the behaviour of NO and N2O during fluidised bed coal combustion[J]. Fuel, 2006, 85(7-8):967-977.

[74] SHIMIZU T, TACHIYAMA Y, FUJITA D, et al. Effect of SO2 removal by limestone on NO, and N2O emissions from a circulating fluidized bed combustor[J]. Energy&Fuels, 1992, 6:753-757.

[75]周浩生,陆继东,周琥.燃煤流化床加入氧化钙的氮转化机理[J].工程热物理学报,2000,21(5):647-651.ZHOU Haosheng, LU Jidong, ZHOU Hu. Nitrogen conversion in fluidized bed combustion of coal with limestone addition[J].Journal of Engineering Thermophysics, 2000, 21(5):647-651.

[76] ZHAO J, GRACE J R, LIM C J, et al. Influence of operating parameters on NOx emissions from a circulating fluidized bed combustor[J]. Fuel, 1994, 73(10):1650-1657.

[77]辛胜伟.大型循环流化床锅炉SO2超低排放改造关键技术研究[J].电力科技与环保,2017,33(4):10-13.XIN Shengwei. Study on modification of SO2 ultra-low emission in CFB boiler[J]. Electric Power Technology and Environmental Protection, 2017, 33(4):10-13.

基本信息:

DOI:10.19944/j.eptep.1674-8069.2025.02.002

中图分类号:X701

引用信息:

[1]韩铠泽,刘方,张光学.循环流化床锅炉炉内脱硫技术研究进展[J].电力科技与环保,2025,41(02):183-193.DOI:10.19944/j.eptep.1674-8069.2025.02.002.

基金信息:

国家自然科学基金项目(52306029)

检 索 高级检索

引用

GB/T 7714-2015 格式引文
MLA格式引文
APA格式引文