| 57 | 0 | 116 |
| 下载次数 | 被引频次 | 阅读次数 |
【目的】为开发高效、环保的低温脱硝催化剂,解决燃煤电厂低负荷运行时烟气温度无法满足SCR脱硝催化剂最佳反应温度的问题,提升NH3选择性催化还原(NH3-SCR)反应的低温活性及抗中毒性能。【方法】本文采用共沉淀法和湿浸渍法设计并制备Mo改性的Ce-Zr固溶体(CexZr1-xO2)催化剂(Mo/CexZr1-xO2),通过X射线粉末衍射(X-ray diffraction,XRD)、氢气程序升温还原(H_2-temperature-programmed reduction,H_2-TPR)、NH3程序升温脱附(NH_3-temperature programmed desorption,NH_3-TPD)等表征手段分析催化剂的结构、氧化还原能力及酸位分布。【结果】研究表明,Ce与Zr形成立方萤石结构的固溶体,显著增强了催化剂的氧化还原能力与比表面积,而MoO3的引入提供了关键的酸位点,协同促进NH3吸附活化。其中,Mo/Ce0.5Zr0.5O2(Mo/C5Z5)催化剂表现出最优性能:在200~350℃内NO转化率>90%,N2选择性高,且在含200μL/L SO2与5%H2O的苛刻条件下仍保持80%以上活性,抗硫抗水性能显著优于传统钒基催化剂。【结论】该研究为开发高效、环保的低温脱硝催化剂提供了新策略,为解决燃煤电厂低负荷运行条件下脱硝催化剂最佳活性与反应温度不匹配的问题提供了新思路,未来需进一步优化性能及长期稳定性以适应复杂烟气环境。
Abstract:[Objective] In order to develop an efficient and environmentally friendly low-temperature denitration catalyst and solve the problem that the flue gas temperature cannot meet the optimal reaction temperature of SCR denitration catalyst during low-load operation of coal-fired power plants, the low-temperature activity and anti-poisoning performance of NH3 selective catalytic reduction(NH_3-SCR) reaction were improved. [Methods] Mo-modified Ce-Zr solid solution(CexZr1-xO2) catalysts(Mo/CexZr1-xO2) were designed and prepared via the coprecipitation method and wet impregnation method. Characterization techniques such as XRD, H_2-TPR, and NH_3-TPD were used to analyze the structure, redox capacity, and acid site distribution of the catalysts. [Results] The results show that the formation of a cubic fluorite-structured solid solution by Ce and Zr significantly enhances the redox capacity and specific surface area of the catalyst, while the introduction of MoO3 provides key acid sites that synergistically promote NH3 adsorption and activation. Among them, the Mo/Ce0.5Zr0.5O2(Mo/C5Z5) catalyst exhibits optimal performance: NO conversion > 90% in the temperature range of 200~350 ℃, high N2 selectivity, and maintains over 80% activity at 250 ℃ under harsh conditions containing 200 μL/L SO2 and 5% H2O. Its sulfur and water resistance is significantly superior to traditional vanadium-based catalysts. [Conclusion] This study provides a new strategy for the development of efficient and environmentally friendly low-temperature denitration catalysts, and provides a new idea for solving the problem of mismatch between the optimal activity of denitration catalysts and reaction temperature under low-load operation conditions of coal-fired power plants. In the future, it is necessary to further optimize performance and long-term stability to adapt to complex flue gas environments.
[1]DAMMA D, ETTIREDDY P, REDDY B, et al. A review of low temperature NH3-SCR for removal of NOx[J]. Catalysts, 2019, 9(4):349.
[2]SHI Z W, PENG Q G, E J Q, et al. Mechanism, performance and modification methods for NH3-SCR catalysts:A review[J]. Fuel,2023, 331:125885.
[3]胡杰.大气中氮氧化物的来源解析与控制技术评估[J].皮革制作与环保科技,2024,5(23):89-90+93.HU Jie. Analysis of sources and evaluation of control technologies for nitrogen oxides in the atmosphere[J]. Leather Manufacture and Environmental Technology, 2024, 5(23):89-90+93.
[4]SONG K L, FENG X B, ZHANG N, et al. Metal-organic framework materials in NH3-SCR:Progress and prospects[J]. Coordination Chemistry Reviews, 2022, 535:216615.
[5]LOCCI C, VERVISH L, FARCY B, et al. Selective non-catalytic reduction(SNCR)of nitrogen oxide emissions:A perspective from numerical modeling[J]. Flow, Turbulence and Combustion, 2018,100(2):301-340.
[6]WANG J, ZHENG K L, SINGH R, et al. Numerical simulation and cold experimental research of a low-NOx combustion technology for pulverized low-volatile coal[J].Applied Thermal Engineering,2017, 114:498-510.
[7]USBERTI N, JABLONSKA M, DI B, et al. Design of a“highefficiency” NH3-SCR reactor for stationary applications. A kinetic study of NH3 oxidation and NH3-SCR over V-based catalysts[J].Applied Catalysis B:Environmental, 2015, 179:185-195.
[8]XU L WN, WANG C Z, CHANG H Z, et al. New insight into SO2poisoning and regeneration of CeO2-WO3/Ti O2 and V2O5-WO3/Ti O2catalysts for low-temperature NH3-SCR[J]. Environmental Science&Technology, 2018, 52(12):7064-7071.
[9]GAO Y, LUAN T, LYU T, et al. Performance of V2O5-WO3-MoO3/TiO2 catalyst for selective catalytic reduction of NOx by NH3[J].Chinese Journal of Chemical Engineering, 2013, 21(1):1-7.
[10]QIU W J, HU Z, ZHOU Q H, et al. Rare earth cerium oxide reinforced cobalt based catalysts for electrolysed water and their properties[J]. Acta Materiae Compositae Sinica, 2024, 41(2):804-815.
[11]CAI Y D, JI X Y, ZHANG B F, et al. Research progress in ceriabased catalysts for the selective catalytic oxidation of NH3[J].Scientia Sinica Chimica, 2024, 54(3):295-308.
[12]SHI Z N, YANG P, TAO F, et al. New insight into the structure of CeO2-TiO2 mixed oxides and their excellent catalytic performances for 1, 2-dichloroethane oxidation[J].Chemical Engineering Journal, 2016, 295:99-108.
[13]DING S P, LIU F D, SHI X Y, et al. Significant promotion effect of Mo additive on a novel Ce-Zr mixed oxide catalyst for the selective catalytic reduction of NOx with NH3[J].Acs Applied Materials&Interfaces, 2015, 18:9497-9506.
[14]TAN W, WANG J M, LI L L, et al. Gas phase sulfation of ceriazirconia solid solutions for generating highly efficient and SO2resistant NH3-SCR catalysts for NO removal[J].Journal of Hazardous Materials, 2020, 388:121729.
[15]DENG J, LI S S, YIN X Y, et al. Influence of surface Ce/Zr ratio on formation ofκ-Ce2Zr2O8 superstructure and its application in three-way catalysis[J]. Journal of Rare Earths, 2023, 41:67-76.
[16]GU T T, LIU Y, WENG X L, et al. The enhanced performance of ceria with surface sulfation for selective catalytic reduction of NO by NH3[J]. Catalysis Communications, 2010, 12(4):310-313.
[17]JI J W, TANG Y, HAN L, et al. Cerium manganese oxides coupled with ZSM-5:A novel SCR catalyst with superior K resistance[J]. Chemical Engineering Journal, 2022, 445:136530.
[18]TAN W, WANG J, CAI Y D, et al. Molybdenum oxide as an efficient promoter to enhance the NH3-SCR performance of CeO2-SiO2catalyst for NO removal[J]. Catalyst Today, 2022, 339:475-483.
[19]CAI Y D, ZHANG B F, YU H W, et al. Shielding ceria based catalysts from SO2 poisoning in NH3-SCR reaction:Modification effect of acid metal oxides[J]. Applied Catalysis B:Environmental,2024, 342:123424.
[20]PENG Y, LI K Z, LI J H. Identification of the active sites on CeO2-WO3 catalysts for SCR of NOx with NH3:An in situ IR and Raman spectroscopy study[J]. Applied Catalysis B:Environmental, 2013, 140-141:483-492.
[21]LI Y, CHENG H, LI D Y, et al. WO3/CeO2-ZrO2, a promising catalyst for selective catalytic reduction(SCR)of NOx with NH3 in diesel exhaust[J]. Chemical Communications, 2008, 12:1470-1472.
[22]CHEN Y X, LI C, CHEN J X, et al. Self-prevention of welldefined-facet Fe2O3/MoO3 against deposition of ammonium bisulfate in low-temperature NH3-SCR[J]. Environmental Science&Technology, 2018, 52(20):11796-802.
[23]SUN C Z, LIU H, CHEN W, et al. Insights into the Sm/Zr codoping effects on N2 selectivity and SO2 resistance of a MnOxTiO2 catalyst for the NH3-SCR reaction[J]. Chemical Engineering Journal, 2018, 347:27-40.
[24]TAN W, LIU A N, XIE S H, et al. Ce-Si mixed oxide:A high sulfur resistant catalyst in the NH3-SCR reaction through the mechanism-enhanced process[J]. Environmental Science&Technology, 2021, 55(6):4017-4026.
[25]HUANG L H, CHEN S H, ZHU Y, et al. Preparation of Ce0.65Zr0.35O2 by co-precipitation:The role of hydrogen peroxide[J]. Journal of Rare Earths, 2013, 31(5):461-469.
[26]DEVAIAH D, REDDY L, PARK S, et al. Ceria–zirconia mixed oxides:Synthetic methods and applications[J]. Catalysis Reviews,2018, 60:177-277.
[27]XIONG Y, TANG C J, YAO X J, et al. Effect of metal ions doping(M=Ti4+, Sn4+)on the catalytic performance of MnOx/CeO2catalyst for low temperature selective catalytic reduction of NO with NH3[J]. Applied Catalysis A:General, 2015, 495:206-216.
[28]LIU Z M, ZHANG S X, LI J H, et al. Promoting effect of MoO3 on the NOx reduction by NH3 over CeO2/TiO2 catalyst studied with in situ DRIFTS[J]. Applied Catalysis B:Environmental, 2014, 144:90-95.
[29]LI L L, ZHANG L, MA K L, et al. Ultra-low loading of copper modified TiO2/CeO2 catalysts for low-temperature selective catalytic reduction of NO by NH3[J]. Applied Catalysis B:Environmental, 2017, 207:366-375.
[30]LI Y J, DU J P, LIN C X, et al. Improvement of low-temperature NH3–SCR activity over CeVO4 modified by Sm[J]. Industrial&Engineering Chemistry Research, 2024, 63(42):17824-17835.
[31]康海彦,莫杜娟,张学军,等. CeO2-WO3催化剂表面酸性和氧化还原性能在脱硝反应中的研究[J].燃料化学学报(中英文),2023,51(6):812-822.KANG Haiyan, MO Dujuan, ZHANG Xuejun, et al. Investigation of the surface acidity and redox on the CeO2-WO3 catalyst for selective catalytic reduction with NH3[J]. Journal of Fuel Chemistry and Technology, 2023, 51(6):812-822.
[32]马静,马子然,林德海,等.活化液助溶剂对再生脱硝催化剂性能的影响[J].化工进展,2022,41(8):4173-4180.MA Jing, MA Ziran, LIN Dehai, et al. Effect of cosolvent in activation solution on regenerated denitration catalysts[J].Chemical Industry and Engineering Progress, 2022, 41(8):4173-4180.
[33]侯丽敏,许杰,王甜甜,等. Ce改性对活化稀土尾矿催化剂NH3-SCR脱硝性能的影响[J].稀有金属与硬质合金,2023,51(2):60-67.KANG Haiyan, MO Dujuan, ZHANG Xuejun, et al. Effects of Ce modification on NH3-SCR denitration performance of activated rare earth tailings catalyst[J]. Rare Metals and Cemented Carbides, 2023, 51(2):60-67.
[34]KYUNGRAN H, SONKI I, SOONCHUL P, et al. Pt/ZrO2 catalyst for a single-stage water-gas shift reaction:Ti addition effect[J].International Journal of Hydrogen Energy, 2013, 38(14):6044-6051.
[35]TANG Zhenchen, LIU Pei, CAO Huatang, et al. Pt/ZrO2prepared by atomic trapping:An efficient catalyst for the conversion of glycerol to lactic acid with concomitant transfer hydrogenation of cyclohexene[J]. ACS Catalysis, 2019, 9:9953-9963.
[36]LI Z L, CHEN H, ZHANG X B, et al. CuW/CeZr Catalysts:A dual-function catalyst for selective catalytic reduction of NO and CO oxidation under oxygen-rich conditions[J]. Catalysis Letters,2021, 11:1-11.
基本信息:
DOI:10.19944/j.eptep.1674-8069.2025.05.011
中图分类号:TQ426;X773
引用信息:
[1]赵勇刚,蔡彦迪,杜顺鑫,等.Mo/Ce_x Zr_(1-x)O_2催化剂的协同调控及其低温NH_3-SCR活性及抗中毒性能研究[J].电力科技与环保,2025,41(05):803-810.DOI:10.19944/j.eptep.1674-8069.2025.05.011.
基金信息:
国家自然科学基金项目(22272077)